skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Laraoui, Abdelghani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The topological Hall effect (THE), a quantum phenomenon arising from the emergent magnetic field generated by a topological spin texture, is a key method for detecting non-coplanar spin structures like skyrmions in magnetic materials. Here, we investigate a bilayer structure of Pt and the conducting ferrimagnet NiCo2O4 (NCO) of perpendicular magnetic anisotropy and demonstrate a giant THE across a temperature range of 2–350 K. The absence of THE in a single-layer Pt and NCO, as well as in Pt/Cu/NCO, suggests its interfacial origin. The maximum THE occurring just before the NCO coercive field indicates its connection to magnetic nucleation centers, which are topologically equivalent to skyrmions. The large normalized THE, based on the emergent-field model, points to a high population density of small magnetic nucleation centers. This aligns with the seemingly unresolvable domain structures by the employed techniques during magnetization reversal, even though clear domain structures are detected after zero-field cooling. These results establish heavy metal/NCO as a promising system for exploring topological spin structures. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026
  2. Abstract Topological spin textures (e.g., skyrmions) can be stabilized by interfacial Dzyaloshinskii‐Moriya interaction (DMI) in the magnetic multilayer, which has been intensively studied. Recently, Bloch‐type magnetic skyrmions stabilized by composition gradient‐induced DMI (g‐DMI) have been observed in 10‐nm thick CoPt single layer. However, magnetic anisotropy in gradient‐composition engineered CoPt (g‐CoPt) films is highly sensitive to both the relative Co/Pt composition and the film thickness, leading to a complex interplay with g‐DMI. The stability of skyrmions under the combined influence of magnetic anisotropy and g‐DMI is crucial yet remains poorly understood. Here, we condcut a systematic study on the characteristics of magnetic skyrmions as a function of gradient polarity and effective gradient (defined as gradient/thickness) in g‐CoPt single layers (thickness of 10–30 nm) using magnetic force microscopy (MFM), bulk magnetometry, and topological Hall effect measurements. Brillouin light scattering spectroscopy confirms that both the sign and magnitude of g‐DMI depend on the polarity and amplitude of the composition gradient in g‐CoPt films. MFM reveals that skyrmion size and density vary with g‐CoPt film thickness, gradient polarity, and applied magnetic field. An increased skyrmion density is observed in samples exhibiting higher magnetic anisotropy, in agreement with micromagnetic simulations and energy barrier calculations. 
    more » « less
    Free, publicly-accessible full text available July 26, 2026
  3. Hemoglobin (Hb) is a multifaceted protein, classified as a metalloprotein, chromoprotein, and globulin. It incorporates iron, which plays a crucial role in transporting oxygen within red blood cells. Hb functions by carrying oxygen from the respiratory organs to diverse tissues in the body, where it releases oxygen to fuel aerobic respiration, thus supporting the organism's metabolic processes. Hb can exist in several forms, primarily distinguished by the oxidation state of the iron in the heme group, including methemoglobin (MetHb). Measuring the concentration of MetHb is crucial because it cannot transport oxygen; hence, higher concentrations of MetHb in the blood causes methemoglobinemia. Here, we use optically detected magnetic relaxometry of paramagnetic iron spins in MetHb drop-cast onto a nanostructured diamond doped with shallow high-density nitrogen-vacancy (NV) spin qubits. We vary the concentration of MetHb in the range of 6 × 106–1.8 × 107 adsorbed Fe+3 spins per micrometer squared and observe an increase in the NV relaxation rate Γ1 (=1/T1, where T1 is the NV spin lattice relaxation time) up to 2 × 103 s−1. NV magnetic relaxometry of MetHb in phosphate-buffered saline solution shows a similar effect with an increase in Γ1 to 6.7 × 103 s−1 upon increasing the MetHb concentration to 100 μM. The increase in NV Γ1 is explained by the increased spin noise coming from the Fe+3 spins present in MetHb proteins. This study presents an additional usage of NV quantum sensors to detect paramagnetic centers of biomolecules at volumes below 100 picoliter. 
    more » « less
  4. Free, publicly-accessible full text available March 18, 2026
  5. Free, publicly-accessible full text available November 12, 2025
  6. We use high-energy photons generated from Ar+plasma source to create a high-density and thick ( up to a thickness of 150 µm) nitrogen-vacancy centers layer in a commercially available type-IIa CVD-grown diamond substrate. 
    more » « less
  7. Ken Haenen (Ed.)
  8. Exploring and understanding magnetism in two-dimensional (2D) van der Waals (vdW) magnetic materials present a promising route for developing high-speed and low-power spintronics devices. Studying their magnetic properties at the nanoscale is challenging due to their low magnetic moment compared to bulk materials and the requirements of highly sensitive magnetic microscopy tools that work over a wide range of experimental conditions (e.g., temperature, magnetic field, and sample geometry). This Perspective reviews the applications of nitrogen-vacancy center (NV) based magnetometry to study magnetism in 2D vdW magnets. The topics discussed include the basics, advantages, challenges, and the usage of NV magnetometry. 
    more » « less
  9. We report direct imaging of boundary magnetization associated with antiferromagnetic domains in magnetoelectric epitaxial Cr 2 O 3 thin films using diamond nitrogen vacancy microscopy. We found a correlation between magnetic domain size and structural grain size which we associate with the domain formation process. We performed field cooling, i.e. , cooling from above to below the Néel temperature in the presence of a magnetic field, which resulted in the selection of one of the two otherwise degenerate 180° domains. Lifting of such a degeneracy is achievable with a magnetic field alone due to the Zeeman energy of a weak parasitic magnetic moment in Cr 2 O 3 films that originates from defects and the imbalance of the boundary magnetization of opposing interfaces. This boundary magnetization couples to the antiferromagnetic order parameter enabling selection of its orientation. Nanostructuring the Cr 2 O 3 film with mesa structures revealed reversible edge magnetic states with the direction of magnetic field during field cooling. 
    more » « less